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In this paper we derive closed form rational approximations to the
Tricomi ¥ function ([1]),

i
we .
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¥(a,c;v) = —— jﬁ e ) T e,
r(a) o
(1)

Re a> 0, larg(elmv)l <nuf2, m<eo<mw ,

which converge uniformly on compact subsets of the sector larg v < n/2 R

v #0 . As Tricoml's ¥ function can be written in terms of the Meijer
G-function ([1])

v{a,c;v) = T(a)TZ;ia-c) Gé:i <%-1ll—3,c-a:> ) 2)

we actually develop rational approximations to the G-function

l 2 g _l l-Oll,l-Olg
E(v) G2;1'<§ I 5 :)
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i

é—ii—j;ll"(-s)F(s+ozl)l”(s+012)v—sds , |are v| < 3n/2 (3)

where the contour I runs from -ie to +iw , and separates the poles of
[(-s) from those of I'(s+ap)l(s+ap), see [1]. 1r w1-2p 1s not an integer,
it follows from the residue theorem that

i>

%D ()

Our rational approximations for E(v) are obtained as follows.
If the contour L in (3) is moved k wunits to the right, we obtain

&1 &
E(v) = T(ag-al)F(al)v 1F1 T

% %
+ F(Oll—ae )F(Olg )V' lFl<l+a2 _o{l




k-1

B(v) = Ta)r(oe) T (o) (o)y 0=+ m(o)
3=0 '

-5

R (v) = 4 voas (5)

I I“("S)1“(S+l)."."(s+n+ozl)1"(s+1‘1+012)
2mi JQ I'(s+1+n)

(o), = Lt

B I'(o)

As it can be shown that Ry(v) = G(v'k) as v—>® and |arg v| < 3n/2 ,
(5) is a paraphrase of the statement

B(v) ~ T(ey )T (o) oFoap,op |- ) ,
v—>® , |arg v| < 3m/2 (8)

Multiplying the first line of (5) by arbitrary Ay kYk 5, and summing from
3
k=0 to a fixed integer n , we obtain the equations

b (VIE(v) = ¢,(v,v) + Fo(v,Y)

By(Y) = 3 VB s Fa(wY) = T ¥R Ry (v) (7)
k=0 k=0

n k-1 .
(V) = 2 Y, TlegN(a) (o)), izg}Ai

j:

Then we see that {,(v,v)/b (Y) is a formal rational approximation to

E(v) and Fn(v,Y)/hn(Y) is its corresponding error. The triangular form
yo(v,Y) can also be written as



n n-k (o)), (ap ), (V)5 (=¥/w )
1) = D ley) 3 3 Ay sy —Etd /
k=0 j=0 J

In Fields [2] , the above formulation was shown to be equivalent
to the Lanczos T-method, see [3] , and the following theorem was proved.

Theorem 1. If |arg vi<m/2 , v# 0, and

-n,n+
hn(Y) = oF nont “"D) A> 0,

er——sn ot

(9)
2\ Lterg , Lo,
then
¥ (v,v) F (v,v)
limlt ———— = E(v) , limit — =0 . (10)
nese Bn(v) ne>w Bp(v)
As the asymptotic estimate
T (1t (1, ) 3
2F2<-n,n+>\ l-) ~ L) 27 (n®v)T exp(S(ngv) - K)
i 5
X frroa™]
T =_(1+ozl+o(2)/3 ; n—>e , larg vl <mw , (11)
was already known, see [4:} > the proof of Theorem 1l reduced to obtaining a
proper estimate for Fn(v,v) + This was effected by showing that the dif-
ferential operator which annihilates E(v) ,
M= (6-0y)(8-a,)-v6 , & = v %._ s (12)
v

when applied to Fy,(v,Y) yields

(8)



F(k+lhal)F(k+l+a

>) (} Y

v

Wl eml=- Toa, . (1)

1
k=0 k.

Thus, 1f the A, ;. are chosen as indicated in (9), the right~hand side of
(13) is essentiélly a Jacobl polynomial which has a uniform algebraic rate
of growth in n , o(n°) , for 0<Y/v s 1.

A variation of parameters’
technique then implies

F (v,v) =@(n°) , n—»® , v fixed . (14)

Note that in Theorem L,the parameter A 1ls essentially unspecified.
By speclalizing A and considering difference instead of differential op-

erators, we obtain, among other benefits, a more convenient formulation of
the error F,(v,v) .

Let

4+ - - | - -
U(u,n,2) = (n+ty-1)(nt+W) 5° - n(nta-1-p) gt

onty -1 on+a~1 ’
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U*(n, )

Limit U(w,n,1)
W

h—>

where E™J is the shift operator on n , i.e., E™J {f(n)} = f(n-j) , and

M(y) = U(O,n,A—E)U(al,n,x-l)U(ae,n,x)-n(n+h-3)YE_lU*(n,A) ;
3
s n(n+e, )(ote, ) (n+r-3)
= ° 4 . . J = L 2 3
AO[? jéi [4;+vB;]E } > Ay e ,
B (n-l)(2n+x-2)g(nﬁyl-l)(n+a2;1) n(2nt)-2)
M7 T DO (e (o) (L)

Equation (16) concluded next page.



) (n-l)(2n+x-1)(n+x-al-2)(n+x~a2-2)
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5. - (2ntr-2), ~ (n-1)(2n+r-2), )
Lo (n+k—l)(n+al)(n+a2) J Bl (n+)\-2)2(n+ozl)(n+a/2) » B =0 . (18)

We then have

Theorem 2. I1f the An x are chosen so that
J

-n,n+k l
Ba(¥) = 2F2 Loy, 1, > ’

: (17)
n n-k (_n)k+3(n X)k;g( l)J(ag)j(—Y)k(Y/V)J
b, (v,Y) = I“(ozl)F(ozg)};)JZO (Lo Dy g (1o yeq 3 (3) 15 ;

then
u(v) {Bp(v)} = 0

M(Y) {4, (v, ¥) = ~m(mn-3 )T (o I (1t ) (/) Ty (‘nﬂém'gﬁ) , (18)
n F(n+h-2)F(lﬁal)F(lﬁwe)

M(v) {qrn(v,v)} = (-1 T(n)I'(A-2)

Proof. All these results follow directly by computation from the
operator equations



Ulsmon) { (m)g(mi), | = (-n)g(mia-1)g(s4n)

(19)

i

wk(m,2) { (n) (@) | = (), (ma-1),

Corollary 2.1. If in Theorem 2, A-3 1is a negative integer, then

u(v) {Fy(v,v) } = 0 (20)

Hence, to analyze the error Fn(v,v) , in this case, it is suf-
ficient to analyze the equation

u(v) {en(v) ] = 0 (e1)

To do this, we introduce some recent results of Wimp,[5]. Let

_ Intl) 3,1 l-n-\,n+l
g (w) = Gzl w ?
n (") I(n+)) 2,3 0, -aty , =0, ’

(22)

1 JP F(-s)T(—s-al)F(—s—a2)(n+x)s wSds
L

omi (n+1)_

then Wimp's work¥* shows that

¥ This 1s not gquite the function that Wimp treated in [5]. But a close
inspection of that work shows that his analysis is actually applicable.
The identification process with Wimp's work is made by replacing his
A, n and Y by w, ntA and =-) , respectively. Also, the applica-
tion of ILemma 3 in this reference ig made easier by employing the fact
2d,-dy, = 1+Y .



(N

) ~ B [ exn ([ + D) fr oD
(25)

T = —(lﬁyiﬂwg)/S 5 n—>+o , |arg w| < 3m/2 .

This leads to our main result,

Theorem 3. If |arg vl <m/2 , v # O, then gn(veﬂl) 5 gn(ve—ﬂl)
and h (v) as defined by (L7) form a basis of solutions for the difference
equation (21).

Proof. It follows from (11) and (23) that the three functions
are linearly independent ag functions of n in the right half plane. A
direct computation using the integral representation in (22) and an analog
of (19) shows that gn(ve‘ﬂl) satisfy (21).

Corollary 3.L. If

= -1, 0t - =
(1) = o7 (U0, |) o n=rere

< non-k (p) o (mn )L (on ). (a ).(-V)k
7)) = [l (e k+3 ktj 13 2’3
¥ (v, v) =T (e ) ng j;o (Lrery Jpeqs (Lhorp Dy 3 (3 ) 13

(24)

and larg v| < n/2 , v % 0 , then there exist well defined analytic functions
¢ (v) , ¢*(v) independent of n such that

1,2/ -1
G2,16

l—O(l, 1—012> q;n(v’v)

0 b, (v)
-1 +mi
- o (v) 55%;7—) + ¢*(v) gﬂf"zv) ) (25)
n n
N e (v )ane ) 2, ten/2 3 e N D
eg— F(Tre; )T (1) exp(S«/_B-( m )+1'r'r>{l+d( )}, — .



Proof. Clearly, the left-hand side of (25) is just the error
F (v,v)/n,(v) . From Corollary 2.1 and Theorem 3 it follows that there
exist functions C®(v) , € = +,-,0, in |arg v| < m/2 , such that

F_(v,v) = ¢H(v)gy(ve ") + o (v)gy(ve ) + cO(v)hy(v) . (26)

The functlons Ce(v) can be found in theory by setting n equal to zero,

one and then two in the first line of (25) and then solving the resulting
equations. The linear independence of gy (ve™ ™) , gn(ve+ﬂl) and hy(v)
implies the analytic character of the C®(v) in jarg vi<m/2 , v # 0.

From Theorem 1, we deduce that Co(v) is ddentically zero in |}arg Vl < n/2 .
Equation (26) then reduces to the first line of (25). The last line of (25)
follows from the preceding asymptotic estimates and the simple fact,

JElen/6 _ |, emi/3 e -t .

Corollary 3.2. The sequence of rational approximations in
"Oll, 1-0(2

. _ L2 /-1t
Corollary 3.1 converges uniformly to G2,l v 0 on compact sub-

sets of Jarg vl <m2 , v# 0.

Finally, we reiterate the main advantages of the rational approxi-
mations in Corollary 3.1. First, they are explicit, as opposed to mini-max
rational approximations which, in general, can only be given numerically.
Second, they can be computed fairly easily, due to the fact that both num-
erator and denominator polynomials, §,(v,v) and h (v) , satisfy the same
third order recursion relation. And last, an explicit form for the error
is known.
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